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Abstract. We have calculated the magnetic moment per atom of nickel clusters (NiN) as a function of
cluster size in the range N ≤ 34 for the geometries proposed in the literature, obtained from different semi-
empirical potentials. The spin-polarized electronic structure has been calculated with a self-consistent tight-
binding method considering the 3d, 4s and 4p valence electrons. We discuss the influence of geometrical
factors like bond distance and coordination number. Good overall agreement with experiment is obtained,
but some discrepancies remain.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 75.30.Pd Surface magnetism – 75.50.-y
Studies of specific magnetic materials

1 Introduction

Several experimental measurements [1,2] and theoretical
calculations [3–8] of the magnetic properties of nickel clus-
ters have been done in recent years motivated by their pos-
sible technological applications as well as for the interest in
their fundamental properties. Those calculations attempt
to explain the behavior of the magnetic moment (per
atom) as a function of the cluster size [1,2] in ferromag-
netic clusters. The experimental results reported by Apsel
et al. [1] are the most precise measurements nowadays
for the average magnetic moment µ̄ in Ni clusters. These
Stern-Gerlach deflection experiments have been performed
for size selected clusters between Ni5 and about Ni700 and
a non-monotonic behavior of µ̄ was observed, in particular
for the region below Ni100, in agreement with the previous
measurements by Billas et al. [2]. An overall decrease of
the average magnetization with increasing cluster size is
accompanied by oscillations displaying a strong reduction
of the magnetization for certain sizes (sharp minima oc-
cur at Ni6 and Ni13, and broad minima around Ni34 and
Ni56) and a strong increase for other sizes (sharp maxima
at Ni5, Ni8 and Ni71 and broad maxima around Ni20 and
Ni42).

It is generally accepted that the main factors that in-
fluence the behavior of the magnetic moments of small
clusters are: i) the low atomic coordination of the atoms
on the surface of the cluster [3], ii) the deviation of the
inter-atomic distances with respect to the bulk values, and
iii) the de-localization of the sp electrons near the Fermi
level [4], that produces an indirect control of the number
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of holes in the d bands, particularly for the late transi-
tion metals. The first two factors are purely geometrical
effects and the last one is electronic although, of course,
the geometrical factors have a manifestation on the elec-
tronic structure. Developing a model that accounts for all
those ingredients is a stringent challenge and the task is
even harder considering that the geometrical structure of
small clusters is unknown and very difficult to determine
since often the structures found are different depending
on the theoretical method used.

Ideally one would like to perform an ab initio calcu-
lation in which the lowest energy atomic arrangement is
determined together with the electronic structure and av-
erage magnetic moment, as done for instance by Reuse
and Khanna [8]. This procedure is, in practice, restricted
to clusters with a small number of atoms, N ≤ 10. For
larger clusters the usual approach has been to calculate
the electronic structure by the tight-binding (TB) formal-
ism for structures previously determined (a) by assuming
that the cluster is a fragment of a crystalline lattice [3,7] or
(b) by using different model inter-atomic many-body po-
tentials [9,10]. Andriotis et al. [5] have determined, how-
ever, both atomic structures and magnetic moments from
a TB-molecular dynamics method.

Experiments measuring the saturation coverage of NiN
by weakly reactive molecules give also information about
the structure of those clusters [11]. The analysis of those
experiments appears to be consistent with a pattern of
icosahedral growth, at least for sizes not far from the
main shell closing numbers (N = 13, 55, ...) [10], but the
situation is not clear for other sizes. The comparison of
calculated and measured magnetic moments can provide
an indirect test of cluster geometries. So far only a few
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studies involving a range of cluster sizes large enough to
make a comparison with experiment meaningful have been
published [3,4,6,7]. Jensen et al. [3] and Guevara et al. [7]
assumed the structure to be close to a crystalline frag-
ment, which is rather restrictive. In a previous work [6]
we have calculated the spin-polarized electronic structure
by solving self-consistently a tight-binding Hamiltonian
for the 3d, 4s and 4p valence electrons of NiN clusters in
a mean-field approximation. The structures were fully op-
timized for N ≤ 20 using molecular dynamics and a semi-
empirical many-body potential based on TB ideas [12].
The calculated geometries indicate an icosahedral type of
growth, so for N ≥ 21 the same potential was used for
a steepest-descent relaxation method, starting with icosa-
hedral structures. The conclusion of that study was that
the observed main minima of µ̄, at N = 13, N = 55
and around N = 34, are reproduced by the calculations,
but the maxima in between are not reproduced well. The
source of the discrepancies may be twofold. On one hand
the atomic structures far from the main minima of µ̄ may
be different from the icosahedral-like motifs assumed. On
the other hand, the parameterized TB method used to cal-
culate the electronic structure may not be flexible enough
to describe well the de-localized sp levels near the Fermi
energy εF, which indirectly affect the occupation of the
up and down spin d bands. As an attempt to shed some
light into this problem, we now undertake the calculation
of the magnetic moments of the Ni clusters for different
geometries taken from several calculations recently pub-
lished using, as in our previous work, a TB Hamiltonian
with 3d, 4s and 4p valence electrons. The geometries used
in the present calculations are those determined by Nayak
et al. [13] and Hu et al. [14]. By comparing the results
of the electronic structure under the same calculational
scheme and approximations for different sets of geome-
tries proposed in the literature, we expect to disentangle
the effects of incorrect geometries from those due to ap-
proximations involved in the calculation of the electronic
structure. In Section 2, we present the theoretical model
used in this work and section 3 explains the geometri-
cal characteristics of the clusters. The results and their
analysis are given in Section 4. We conclude with a brief
summary in Section 5.

2 Model and approximations

The spin-polarized electronic structure has been deter-
mined for each geometrical arrangement of the NiN clus-
ters by solving self-consistently a tight-binding Hamilto-
nian for the 3d, 4s and 4p valence electrons in a mean-field
approximation. The non-diagonal elements of the Hamil-
tonian are assumed spin-independent and are obtained us-
ing the Slater-Koster approximation taking the two-center
hopping integrals from Papaconstantopoulos, who fitted
them to reproduce the band structure of fcc bulk nickel

[15]. Since the interatomic distances in the clusters [16]
differ a little from the distances in the bulk, we have as-
sumed the hopping integrals in the neighborhood of the
ideal first- and second-nearest-neighbors values to follow
the usual power law (r0/rij)

l+l′+1, where r0 is the bulk
first (second) nearest-neighbor distance and l, l′ are the
orbital angular momenta of the spin-orbitals involved in
the hopping process [17]. This scaling law is only approxi-
mate, and an exponential decay has been sometimes used
[18]. In fact the ratio of the first and second neighbor in-
tegrals fitted by Papaconstantopoulos does not obey the
(r0/rij)

l+l′+1 law for some Slater-Koster integrals. Nev-
ertheless, tests have been performed that indicate that
reasonable changes in the scaling law or in the basic fit-
ted parameters do not produce significant changes in the
magnetic moments [19]. The diagonal terms of the Hamil-
tonian are spin-dependent via the electron-electron inter-
action, which appears as a correction shift of the orbital
energy levels in a mean-field approximation

εiασ = ε0
iα + zσ

∑
β

Jαβ

2
µiβ +Ωiα , (1)

where i indicates the atomic site, α and β stand for the
type of orbital (s, p, d) and σ is the spin projection. ε0

iα

are the orbital energies taken from the fit of Papaconstan-
topoulos for paramagnetic bulk Ni, and consequently do
not incorporate the magnetic contribution, although they
implicitly contain the rest of the electron-electron inter-
actions as well as the crystalline field of the bulk. The
variations of the last two contributions when one consid-
ers the clusters, instead of the bulk, are accounted for
by the potentials Ωiα. The second term in equation (1)
is the spin-dependent shift due to the spin-polarization
µiβ = niβ↑ − niβ↓ of the electrons at site i and orbital
β, calculated from the occupation numbers niβσ. In this
term, Jαβ are the exchange interaction parameters and zσ
is the sign function (z↑ = 1, z↓ = −1). All the exchange
parameters involving s and p electrons are neglected and
Jdd is fitted in order to reproduce the bulk magnetic mo-
ment. Note that spin-polarization of the delocalized sp
band will also occur as a consequence of the hibridiza-
tion with the spin-polarized d-states. Finally, the site-
and orbital-dependent potentials Ωiα (Ωid, Ωis = Ωip)
are self-consistently determined in order to assure the sp
and d electronic occupations at each site within the clus-
ter, fixed in our model by a linear interpolation between
the isolated atom (d8, s2, p0) and the bulk (d9.1, sp0.9)
configurations according to the local coordination num-
ber, and assuming local charge neutrality, that is a total
of 10 spd electrons on each site. We have considered dif-
ferent potentials for the localized d-states (Ωid) and for
the delocalized sp-states (Ωis = Ωip). The spin-dependent
local electronic occupations are self-consistently obtained
by integrating up to the Fermi level the local densities of
states, which are calculated at each iteration by using the
recursion method [20].



J.L. Rodŕıguez-López et al.: Magnetic moments of NiN clusters (N ≤ 34): relation to atomic structure 237

Table 1. Similarities and differences between the ground state structures of NiN clusters (N ≤ 15) obtained with different
potentials: Gupta (G), Finnis-Sinclair (FS), Lennard-Jones (LJ), Morse (M). When one structure is common to several potentials,
this structure is outlined on the last column. The data for Ni8 is given in Table 4.

N (G) [9] (FS) [13] (LJ) [14] (M) [14] Common Structure

5 TB TB TB TB Trigonal Bipyramid (TB)
6 O O O O Octahedron (O)
7 PB PB PB PB Pentagonal Bipyramid (PB)
9 a b — —
10 PB+3 PB+3 — — Pentagonal Bipyramid+3 (PB+3)
11 PB+4 PB+4 PB+4 c Pentagonal Bipyramid+4 (PB+4)
12 I−1 I−1 — — Icosahedron−1 (I−1)
13 I I I I Icosahedron (I)
14 I+1 I+1 — — Icosahedron+1 (I+1)
15 d e d e

aOctahedron+3. bPentagonal bipyramid+2. cHexahedron+6. dIcosahedron+2. eHexagonal antiprysm.

Table 2. Number ni of equivalent sites (and coordination Zi), average coordination Z̄ and average nearest-neighbor distance
dn as a function of cluster size N for the ground state geometries found by Nayak et al. [13].

Finnis & Sinclair

N ni (Zi) Z̄ dn (Å)

2 2(1) 1.0 2.01
3 3(2) 2.0 2.11
4 4(3) 3.0 2.19
5 2(3), 3(4) 3.6 2.21
6 6(4) 4.0 2.24
7 5(4), 2(6) 4.57 2.25
8 4(4), 4(5) 4.5 2.25
9 4(4), 2(5), 2(6), 1(8) 5.11 2.26
10 3(4), 3(5), 3(6), 1(9) 5.4 2.26
11 2(4), 4(5), 4(6), 1(10) 5.64 2.25
12 5(5), 6(6), 1(11) 6.0 2.27
13 12(6), 1(12) 6.46 2.26
14 1(3), 9(6), 3(7), 1(12) 6.43 2.26
15 12(6), 2(7), 1(14) 6.67 2.24
16 1(4), 7(5), 7(6), 1(9) 5.63 2.27
17 2(4), 3(5), 11(6), 1(11) 5.88 2.27
18 2(4), 8(5), 8(7) 5.77 2.26
19 12(6), 5(8), 2(12) 7.16 2.27
20 2(5), 16(6), 2(11) 6.4 2.28
21 1(4), 4(5), 8(6), 4(7), 2(8), 1(10), 1(12) 6.57 2.26
22 5(5), 9(6), 4(7), 2(8), 1(9), 1(12) 6.54 2.28
23 2(5), 12(6), 6(7), 1(8), 2(12) 6.78 2.26

3 Geometrical structures selected for the Ni
clusters

As mentioned in Section 1, calculations of the geome-
tries of Ni clusters for most cluster sizes within wide
size ranges have only been performed using semi-empirical
inter-atomic potentials. Table 1 shows the similarities and
differences between the structures obtained with those po-
tentials for N ≤ 15. When a structure is dominant, this
is outlined on the last column of the table. Nayak et al.
[13] performed molecular dynamics simulations with the
Finnis-Sinclair (FS) potential [21], which is based on the
TB method and contains many-body interactions; some
geometrical characteristics of the cluster ground state up

to N = 23 are presented in Table 2. Atoms in equiva-
lent sites are grouped, and the Table gives the number of
atoms in those groups (with their respective atomic co-
ordination), the average coordination number in the clus-
ter and the average nearest-neighbor distance. Plots of
the cluster shapes are given in Nayak’s paper [13]. The
ground state structures of Hu et al. [14] correspond to the
Lennard-Jones (LJ) and Morse (M) potentials, and were
obtained by combining the Monte Carlo method and a
fast relaxation algorithm of the molecular dynamics; plots
of the cluster shapes are given in the original paper [14].
In this study we focus only on those clusters for which the
LJ and the M potentials predict different structures. The
geometrical characteristics of those clusters are presented
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Table 3. Number ni of equivalent sites (and coordination Zi), average coordination Z̄ and average nearest-neighbor distance
dn for the ground state geometries found by Hu et al. [14] using Lennard-Jones and Morse potentials.

Lennard-Jones

N ni (Zi) Z̄ dn (Å)

8 1(3), 3(4), 2(5), 1(6), 1(7) 4.75 2.48
11 2(4), 4(5), 4(6), 1(10) 5.6 2.48
15 2(4), 8(6), 2(7), 2(8), 1(12) 6.5 2.48
17 2(4), 2(5), 6(6), 2(7), 2(8), 2(9), 1(12) 6.7 2.48
27 12(6), 8(8), 2(9), 1(10), 4(12) 7.8 2.50
29 12(6), 6(8), 6(9), 5(12) 8.1 2.51
32 2(5), 14(6), 2(7), 9(8), 5(12) 7.5 2.46
34 2(4), 2(5), 10(6), 6(7), 5(8), 4(9), 5(12) 7.5 2.46

Morse

N ni (Zi) Z̄ dn (Å)

8 4(4), 4(6) 5 2.48
11 1(4), 6(5), 3(6), 1(10) 5.6 2.43
15 12(6), 2(7), 1(14) 6.7 2.41
17 3(4), 7(6), 3(7), 3(9), 1(12) 6.7 2.39
27 1(4), 10(6), 2(7), 5(8), 4(9), 1(10), 4(12) 7.8 2.36
29 12(6), 6(8), 6(9), 5(12) 8.1 2.36
32 12(6), 7(8), 6(9), 1(10), 6(12) 8.2 2.36
34 12(6), 5(8), 10(9), 7(12) 8.4 2.36

Table 4. Different structures proposed in the literature for Ni8. Symbols as in Tables 2 and 3.

Structure (Potential) ni (Zi) Z̄ dn (Å)

Bicapped octahedron (Gupta) [9] 4(4), 4(5) 4.5 2.46

Saturated tetrahedron (Parks) [11] 4(3), 4(6) 4.5 2.43

Bicapped octahedron (Finnis and Sinclair) [13] 4(4), 4(5) 4.5 2.25

Capped pentagonal bipyramid (Lennard-Jones) [14] 1(3), 3(4), 2(5), 1(6), 1(7) 4.75 2.48

Deformed central tetrahedron (Morse) [14] 4(4), 4(6) 5.0 2.48

in Tables 3. For Ni8 we have also considered a structure
proposed by Parks et al. [11], induced from the analysis
of their adsorption experiments. Table 4 presents a sum-
mary of the characteristics for the different structures con-
sidered for Ni8. As can be seen, for some clusters several
different structures have been proposed in the literature,
as a consequence of the different type of potentials used.

4 Results and discussion

Prior to presenting the results of the electronic structure
calculations, we comment on the geometrical characteris-
tics of the clusters by comparing these with our previous
calculations [6] based on the many-atom TB model po-
tential developed by Gupta [12]. In Figure 1, we present
the average nearest-neighbor distance as a function of the
cluster size. The interatomic distances obtained by Nayak
et al. are 0.2-0.3 Å smaller than the ones obtained with the
Gupta potential. Both show a rather monotonic increase
with the cluster size, fast up to about Ni8 and then slow,
but only the Gupta potential achieves the convergence to

the bulk value of dn(bulk) = 2.49 Å. In the same figure,
we present Hu’s results for M and LJ potentials. Inter-
atomic distances in the LJ clusters are close to those from
the Gupta potential and the Morse potential produces
distances in between those of the LJ and Finnis-Sinclair
potentials. For the Morse potential, the average nearest-
neighbor distance has a rather unphysical behavior.

The average atomic coordination Z̄ is presented in Fig-
ure 2. Z̄ is insensitive to the type of inter-atomic potential
for cluster sizes smaller than N = 15, except for N = 8,
where some discrepancies exist. For larger clusters the co-
ordination obtained by Nayak [13] using the FS potential
is lower than the coordination obtained from the Gupta
potential except for Ni19. The LJ clusters have practically
the same average coordination numbers as the clusters
with Gupta potential and the same can be said of the
Morse clusters with the exception of Ni32 and Ni34, that
present larger coordination. In Figures 1 and 2 we have
also included the structure suggested by Riley et al. [11]
for Ni8.
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Fig. 1. Average nearest-neighbor distance dn as a function
of cluster size N for NiN clusters, obtained from: (•) Finnis-
Sinclair potential [13], (∗) Lennard-Jones potential [14], (×)
Morse potential [14] and (4) Gupta potential [6]. The addi-
tional result for Ni8 (�) corresponds to a structure proposed
by Riley et al. [11].

In Figures 3 and 4 we show the calculated magnetic
moments together with the experimental results of Apsel
et al. [1]. To clarify the comparison we plot first in Fig-
ure 3 the calculated magnetic moments for the structures
obtained with the FS [13], LJ [14] and Morse potentials
[14], compared with the experimental magnetic moments
[1]. Then, in Figure 4 the same three sets of new the-
oretical results are compared to the previous results of
Aguilera-Granja et al. [6] (Gupta potential and icosahe-
dral growth) and to those of Andriotis et al. [5] obtained
from tight-binding molecular dynamics. The common be-
havior to all the calculations is a decrease of the magnetic
moment as the cluster size increases, the differences aris-
ing in the details of the oscillations superimposed to the
overall decrease. The overall decrease of µ̄ with N can be
seen as a consequence of the growing average coordina-
tion which occurs as the fraction of surface atoms in the
cluster decreases. Concerning this overall behavior of µ̄,
all the theoretical calculations predict a steeper decrease
compared to experiment; in the region around Ni34, the
calculated moments are closer to the magnetic moment of
bulk nickel. The minima of µ̄ in Ni6 and Ni13 reported
experimentally are reproduced by the structures found by
Nayak [13], although the minimum at Ni13 is very shal-
low. Additional calculated minima occur at N = 15 and
N = 18, while shallow minima are measured at N = 16
and 19. Local maxima of µ̄ are predicted at Ni7, Ni14,
Ni16, Ni20 and Ni22, in reasonable agreement with the
measured ones at Ni8, Ni15, Ni17, Ni20 and Ni22. The drop
between Ni20 and Ni21 agrees with experiment, although
the calculation exaggerates that drop. In summary, the
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Fig. 2. Average atomic coordination as a function of clus-
ter size N obtained from the Finnis-Sinclair, Lennard-Jones,
Morse and Gupta potentials. Symbols as in Figure 1.

magnitude of the oscillations of µ̄ obtained for the FS
geometries is too large compared to experiment, except
for the minimum at Ni13 in which case the opposite oc-
curs: the theoretical local minimum is too shallow. The
structures determined with the Gupta potential [6] pro-
duce a more accurate behavior of µ̄ for small clusters (the
correct minimum at Ni6 and maximum at Ni8, and a deep
minimum at Ni13) but µ̄ decreases monotonically between
Ni14 and Ni23. Notice that in the size range N ≤ 20
the structures we are comparing are obtained, for both
potentials (Finnis-Sinclair and Gupta), from fully uncon-
strained MD, and that these structures are rather similar,
as revealed by the identical average coordination (Fig. 2),
except in a few cases with N ≥ 15. These structural dif-
ferences for N ≥ 15 account for the differences in the
behavior of µ̄ in that size region. Also, another important
difference is that the FS structures lead to lower values
of µ̄ (except in a few exceptional cases) and this is cer-
tainly ascribed to the shorter inter-atomic separations of
Figure 1. In conclusion, compared to experiment, the over-
all predictions of the FS and Gupta potentials are rather
similar although there are some differences of detail, es-
pecially for N ≥ 15. Both potentials fail to reproduce the
approximate constancy of µ̄ between Ni14 and about Ni22

observed by Apsel et al. [1], so a possible misrepresentation
of the correct cluster geometry does not appear to be the
main source of discrepancies with experiment. In Figure 4
we observe that the LJ potential leads to structures that
have magnetic moments similar to those from the Gupta
potential. This is understandable in view of the similar
average nearest-neighbor distances and coordination for
the two potentials. The magnetic moments corresponding
to the Morse structures are rather similar to those from
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Fig. 3. Average magnetic moments for the new geometries
considered in this work corresponding to the Finnis-Sinclair,
Lennard-Jones and Morse potentials (symbols as in Fig. 1)
compared to experimental results (�) with error bars as given
by Apsel et al. [1]. Horizontal dotted line indicates the mea-
sured bulk value.

other potentials for small N , but become too low for large
N , becoming even smaller than the bulk moment. This is
also a consequence of the small inter-atomic distances dis-
played in Figure 1. Figures 3 and 4 also include the result
for the structure suggested by Riley et al. [11] for Ni8 and
the agreement with the experimental magnetic moment
is fairly good. Furthermore, in Figure 4, we also include
the results of Andriotis et al., also based on a TB method
but with geometrical structures obtained by TB-molecular
dynamics [5]. The magnitude of µ̄ is similar to the other
predictions and the detailed behavior is not better. One
can notice the failure to reproduce the observed minima
at N = 6 and N = 13. The limited number of cluster sizes
makes a more detailed comparison difficult.

In conclusion, the differences in average magnetic mo-
ments produced by the structures predicted by the differ-
ent interatomic potentials analyzed here are driven mainly
by differences in interatomic distances which affect, first
of all, the hopping integrals and then the electronic struc-
ture through self-consistency. Lower interatomic distances
result in smaller magnetic moments. This is, nevertheless,
not the only source of discrepancies between the various
calculations. Intrinsic structural differences account also
for differences of µ̄. The average coordination reflects, to
some extent, structural differences, although it is not a
very precise indicator. For instance, the low average coor-
dination in the FS structures for Ni16-Ni18 and Ni20-Ni23

only becomes reflected in high magnetic moments for Ni16

and Ni20, but the other clusters have, instead, low mag-
netic moments. In Figure 5 we present the sp contribution
to the magnetic moment as a function of the cluster size.
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Fig. 4. Calculated average magnetic moment per atom as
a function of cluster size for Finnis-Sinclair, Lennard-Jones,
Morse and Gupta geometries (symbols as in Fig. 1). Also re-
sults from tight-binding molecular dynamics (2) after Andrio-
tis [5].
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Fig. 5. Contribution of the sp magnetic moment as a function
of the cluster size for Finnis-Sinclair, Lennard-Jones and Morse
geometries. Symbols as in previous figures.

These results reinforce the view that the sp contribution
is only important for small clusters and that it controls
the oscillations of µ̄ for small N as we have reported pre-
viously [6].
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5 Summary

We have compared the results of calculations of the mag-
netic moments of nickel clusters using a tight-binding for-
malism and several different proposals for the geometrical
structures given in the literature, obtained from different
semi-empirical interatomic potentials and in one case from
TB-molecular dynamics [5]. The results for the different
sets of geometrical structures are roughly consistent with
each other. Those show the overall decrease of µ̄ with clus-
ter size, and predict the oscillations of µ̄ for small N rea-
sonably well. All the calculations, however, give a faster
decrease of µ̄ with N and predict a faster approach to the
bulk value. In particular, the approximate constancy of µ̄
in the range between Ni14 and Ni20, which has been sug-
gested [6] that could be related to delocalization of the
sp electrons near the Fermi level [4], remains largely un-
explained and perhaps requires a theory beyond the TB
formalism.
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W.J. Hu for providing us with atomic coordinates and detailed
structures of clusters in references [13] and [14]. This work has
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Junta de Castilla y León (Grant VA 72/96). Two of us (JLRL
and FAG) also acknowledge support from CONACyT (Grant
625851-E), México.
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